Enumeration of polyominoes inscribed in a rectangle
نویسندگان
چکیده
منابع مشابه
Enumeration of minimal 3D polyominoes inscribed in a rectangular prism
We consider the family of 3D minimal polyominoes inscribed in a rectanglar prism. These objects are polyominos and so they are connected sets of unitary cubic cells inscribed in a given rectangular prism of size b×k×h and of minimal volume equal to b + k + h − 2. They extend the concept of minimal 2D polyominoes inscribed in a rectangle studied in a previous work. Using their geometric structur...
متن کاملAlgorithm for finding the largest inscribed rectangle in polygon
In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...
متن کاملEnumeration of inscribed polyominos
We introduce a new family of polyominos that are inscribed in a rectangle of given size for which we establish a number of exact formulas and generating functions. In particular, we study polyominos inscribed in a rectangle with minimum area and minimum area plus one. These results are then used for the enumeration of lattice trees inscribed in a rectangle with minimum area plus one. Résumé. No...
متن کاملar X iv : 0 71 1 . 05 82 v 1 [ m at h . C O ] 5 N ov 2 00 7 PERMUTATIONS DEFINING CONVEX PERMUTOMINOES
A permutomino of size n is a polyomino determined by particular pairs (π1, π2) of permutations of size n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. Here we determine the combinatorial properties and, in particular, the characterization for the permutations defining convex permutominoes. Using such a characterization, these permutations can be uniquely represented in terms of the so called square...
متن کاملEnumeration of Symmetry Classes of Convex Polyominoes in the Square Lattice
This paper concerns the enumeration of rotation-type and congruence-type convex polyominoes on the square lattice. These can be defined as orbits of the groups C4, of rotations, and D4, of symmetries, of the square, acting on (translation-type) polyominoes. In virtue of Burnside’s Lemma, it is sufficient to enumerate the various symmetry classes (fixed points) of polyominoes defined by the elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 158 شماره
صفحات -
تاریخ انتشار 2010